
1

Introduction to
NERSC Resources

Computer Sciences Summer Student Program
June 11, 2020

Helen He
NERSC User Engagement Group

2

Outline
● NERSC and Systems Overview
● Connecting to NERSC
● File Systems and Data Management/Transfer
● Software Environment / Building Applications
● Running Jobs
● Data Analytics Software and Services
● NERSC Online Resources
● Hands-on: Compiling and Running Jobs

NERSC and Systems Overview

4

NERSC is the Mission HPC Computing Center for
the DOE Office of Science
● NERSC deploys advanced HPC and data systems for the

broad Office of Science community
● NERSC staff provide advanced application and system

performance expertise to users
● Approximately 7,000 users and 800 projects
● Over 2,000 publications cite using NERSC resources per

year
● Founded in 1974, focused on open science
● Division of Lawrence Berkeley National Laboratory

5

NERSC Systems Roadmap

NERSC-7: Edison
Multi-core CPU

NERSC-8: Cori
Manycore CPU
NESAP Launched:
transition applications to
advanced architectures

2013 2016 2024

NERSC-9: Perlmutter
CPU and GPU nodes
Continued transition of
applications and support for
complex workflows

2020

NERSC-10

6

Cori Brings HPC and Data Together

Phase I: 2388 x 32-core Intel Xeon “Haswell” 128 GB DDR4
Also known as “Data Partition” (76,416 cores total)

Phase II: 9688 x 68-core Intel Xeon Phi “KNL” 96 GB DDR4 + 16 GB MCDRAM
 (658,784 total cores)

Gerty Cori: Biochemist and first American woman to win a Nobel Prize in science

Cori: #13 in Nov 2019 (#5 in Nov 2016) Top 500 list

7

NERSC-9: Perlmutter
● Cray Shasta System providing 3-4x capability of Cori system

○ Phase 1 will arrive in late 2020
● First NERSC system designed to meet needs of both large scale

simulation and data analysis from experimental facilities
○ Includes both NVIDIA GPU-accelerated and AMD CPU-only nodes

● Named after Saul Perlmutter: Winner of 2011 Nobel Prize in Physics
for discovery of the accelerating expansion of the universe.
○ Works at LBL, is a NERSC user
○ Leader of the Supernova Cosmology Project. Uses supercomputers to combine

large-scale simulations with experimental data analysis

8

NERSC Systems Map 2020

Connecting to NERSC

10

Multi-Factor Authentication (MFA)
● NERSC password + OTP ("One-Time Password")

○ OTP obtained via the “Google Authenticator” app on your
smartphone

○ Alternative/backup option: Authy on desktop https://authy.com/
● MFA is used in login to NERSC systems, web sites, and

services
○ Much harder for someone to hack your account

● Mandatory
○ except in special circumstances

● Setup MFA
○ https://docs.nersc.gov/connect/mfa/

https://docs.nersc.gov/connect/mfa/

11

MFA Examples
<laptop>$ ssh -l elvis cori.nersc.gov
…
Login connection to host cori01 :
Password + OTP:

12

Connecting to NERSC: SSH
● All NERSC computational systems are accessible via ssh
● First: you need a terminal program on your desktop/laptop

○ Mac: "terminal" (built-in) or "iTerm2" (https://www.iterm2.com/)
○ Windows: PuTTY

(https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)
○ Linux: Your own favorite :-)

● If you will use X-forwarding (think GUI) (Note: NX is better!) then you
also need an X server
○ Mac: XQuartz (https://www.xquartz.org/)
○ Windows: Cygwin/X (http://x.cygwin.com/)
○ Linux: built in

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.xquartz.org/
http://x.cygwin.com/

13

Example Session (Terminal only)
localhost:~elvis> ssh -l elvis cori.nersc.gov

 * NOTICE TO USERS *
 * --------------- *
 * Lawrence Berkeley National Laboratory operates this *
 * computer system under contract to the U.S. Department of *
 * Energy. This computer system is the property of the United *
 * States Government and is for authorized use only. *Users *
 * (authorized or unauthorized) have no explicit or implicit *
 * expectation of privacy.* *
 …… *

Password: <enter your SSH password + OTP (one-time-password) here>

You will login to one of the login nodes (12 on Cori).

To allow X-forwarding to access visualization programs, use the “-Y” flag:
localhost% ssh -l elvis -Y cori.nersc.gov
 e/elvis> module load matlab
 e/elvis> matlab
 <MATLAB starts up>

Prompt on local system

Notification of acceptable use

Password prompt

14

Connecting to NERSC: NX (1)
● NERSC recommends using NX instead of SSH X-forwarding since NX is

faster and more reliable
● NX is a service for Accelerated X

Opens a new xterm

15

Connecting to NERSC: NX (2)
● NX also has the benefit of long lasting terminal sessions that

can survive between lost internet connections
○ Can reconnect later, even from a different location or computer

● Download and install the Client software: NoMachine
○ Instructions at https://docs.nersc.gov/connect/nx
○ Works on Window/Mac/Linux

● Or use NX Desktop from MyNERSC
○ Temporarily disabled currently
○ Is slower compared to NX Client

https://docs.nersc.gov/connect/nx

16

NoMachine Login with MFA

don't save the password (it changes every login!)

MFA OTP immediately after password (no spaces)

17

NoMachine

18

sshproxy
• sshproxy.sh creates a short-term (24 hours) certificate

o Run sshproxy.sh once, then you can ssh to NERSC
systems for the next 24 hours before being asked for
password+OTP again

• https://docs.nersc.gov/connect/mfa/#sshproxy

https://docs.nersc.gov/connect/mfa/#sshproxy

19

Jupyter

You can access Cori from any web browser, via https://jupyter.nersc.gov

https://jupyter.nersc.gov

File Systems and Data
Management / Transfer

21

Simplified NERSC File Systems

Memory

Burst Buffer

Scratch

Community

HPSS

Performance

Capacity

Global Common

Global Home

1.8 PB SSD Burst Buffer on Cori
Cray Datawarp 1.8 TB/s,
temporary for job or campaign

28 PB (Cori) HDD Scratch
Lustre 700 GB/s,
temporary (12 wk purge)

157 PB HDD Community
Spectrum Scale (GPFS)
150 GB/s, permanent

150 PB Tape Archive
HPSS Forever

20 TB SSD Software
Spectrum Scale
Permanent
Faster compiling / Source Code

22

Global File Systems
 Global Home
● Permanent, relatively small

storage
● Mounted on all platforms
● NOT tuned to perform well for

parallel jobs
● Quota cannot be changed
● Snapshot backups (7-day history)
● Perfect for storing data such as

source code, shell scripts

 Community File System (CFS)
● Permanent, larger storage
● Mounted on all platforms
● Medium performance for parallel

jobs
● Quota can be changed
● Snapshot backups (7-day history)
● Perfect for sharing data within

research group

23

Local File Systems
 Scratch
● Large, temporary storage
● Optimized for read/write

operations, NOT storage
● Not backed up
● Purge policy (12 weeks)
● Perfect for staging data and

performing computations

 Burst Buffer
● Temporary storage

○ Can be per job or persistent for
multiple users and jobs to access

● High-performance SSD file
system

● Available on Cori only
● Perfect for getting good

performance in I/O-constrained
codes

24

HPSS: Long Term Storage System

● High-Performance Storage System
● Archival storage of infrequently accessed data
● Use hsi and htar to put/get files between NERSC

computational systems and HPSS
● More info at

○ https://docs.nersc.gov/filesystems/archive/

https://docs.nersc.gov/filesystems/archive/

25

DTN: Dedicated Data Transfer System
● Data Transfer Nodes (DTN) are dedicated servers tuned for

moving data at NERSC
○ Monitored bandwidth capacity between NERSC & other major facilities

such as ORNL, ANL, BNL, SLAC…
○ Can be used to move data internally between NERSC systems and/or

NERSC HPSS
● Use NERSC DTNs to move large volumes of data in and out

of NERSC or between NERSC systems
● More info at

○ https://docs.nersc.gov/systems/dtn/

https://docs.nersc.gov/systems/dtn/

26

Globus Online
● The recommended tool for moving data in&out of NERSC

○ Reliable & easy-to-use web-based service:
■ Automatic retries
■ Email notification of success or failure

○ NERSC managed endpoints for optimized data transfers

● NERSC documentation
https://docs.nersc.gov/services/globus/

● Globus extensive documentation
https://docs.globus.org

https://docs.nersc.gov/services/globus/
https://docs.globus.org/

27

Data Transfer General Tips
● Use Globus Online for large, automated or monitored transfers
● scp is fine for smaller, one-time transfers (<100MB)

○ But note that Globus is also fine for small transfers
● Don’t use DTN nodes for non-data transfer purposes

○ Use system login nodes for more general routine tasks
● Don't use your $HOME directory

○ Instead use /global/cfs, $SCRATCH … for better performance
● Plain “cp” is still used for transfers within file systems

Software Environment and
Building Applications

29

Software
● Cray supercomputers OS is a version of Linux
● Compilers are provided on machines
● Libraries: many libraries are provided by vendor, many

others provided by NERSC
● Applications: NERSC compiles and supports many

software packages (such as chemistry and materials
sciences packages) for our users

30

Modules Environment
● Modules are used to manage the user environment

○ https://docs.nersc.gov/environment/#nersc-modules-environment
module

list To list the modules in your environment

avail

avail -S

To list available modules
 To see all available modules: % module avail
 To see all available netcdf modules: % module avail –S netcdf

load/unload To load or unload module

show/display To see what a module loads

whatis Display the module file information

swap/switch To swap two modules
For example: to swap architecture target from Haswell to KNL
% module swap craype-haswell craype-mic-knl

help General help: $module help
Information about a module: $ module help PrgEnv-cray

t

https://docs.nersc.gov/environment/#nersc-modules-environment
https://docs.nersc.gov/environment/#nersc-modules-environment

31

Default Loaded Modules

5) Compiler 8) Cray Scientific Libraries
20) Programing Environment 21) Target architecture Driver 22) MPI Libraries

yunhe@cori03:~> module list
Currently Loaded Modulefiles:
 1) modules/3.2.11.4 13)
gni-headers/5.0.12.0-7.0.1.1_6.27__g3b1768f.ari
 2) nsg/1.2.0 14) xpmem/2.2.20-7.0.1.1_4.8__g0475745.ari
 3) altd/2.0 15) job/2.2.4-7.0.1.1_3.34__g36b56f4.ari
 4) darshan/3.1.7 16) dvs/2.12_2.2.156-7.0.1.1_8.6__g5aab709e
 5) intel/19.0.3.199 17) alps/6.6.57-7.0.1.1_5.10__g1b735148.ari
 6) craype-network-aries 18) rca/2.2.20-7.0.1.1_4.42__g8e3fb5b.ari
 7) craype/2.6.2 19) atp/2.1.3
 8) cray-libsci/19.06.1 20) PrgEnv-intel/6.0.5
 9) udreg/2.3.2-7.0.1.1_3.29__g8175d3d.ari 21) craype-haswell
 10) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari 22) cray-mpich/7.7.10
 11) pmi/5.0.14 23) craype-hugepages2M
 12) dmapp/7.1.1-7.0.1.1_4.43__g38cf134.ari

Do not do “module purge”

32

Cross-Compile is Needed
● Cori: Haswell compute nodes and KNL compute nodes
● All Cori login nodes are Haswell nodes
● We need to cross-compile

○ Directly compile on KNL compute nodes is very slow
○ Compiles on login nodes; Executables runs on compute nodes

● Binaries built for Haswell can run on KNL nodes, but not vice
versa

● Recommends to build separate binaries for each architecture
to take advantage of optimizations unique to processor type

33

Software Environment
● Available compilers: Intel, GNU, Cray
● Use compiler wrappers to build. It calls native compilers for each

compiler such as ifort, mpiicc, etc. underneath.
○ Do not use native compilers directly.
○ ftn for Fortran codes: ftn my_code.F90
○ cc for C codes: cc my_code.c
○ CC for C++ codes: CC my_code.cc

● Compiler wrappers add header files and link in MPI and other
loaded Cray libraries by default
○ Builds applications dynamically by default. Can add “-static” to build

dynamically if chosen

34

How to Compile for KNL
● The default loaded architecture target module is

“craype-haswell” on the Haswell login nodes.
○ This module sets CRAY_CPU_TARGET to haswell

● Best recommendation to build for KNL target
○ module swap craype-haswell craype-mic-knl
○ The above sets CRAY_CPU_TARGET to mic-knl

35

Building Simple Test Program (1)
● To build on Cori Haswell:

○ Using default Intel compiler:
ftn -o mytest mytest_code.F90

○ Using Cray compiler:
module swap PrgEnv-intel PrgEnv-cray
ftn -o mytest mytest_code.F90

36

Building Simple Test Program (2)
● To build on Cori KNL

○ Using default Intel compiler
module swap craype-haswell craype-mic-knl
ftn -o mytest mytest_code.F90

○ Using Cray compiler
module swap PrgEnv-intel PrgEnv-cray
module swap craype-haswell craype-mic-knl
ftn -o mytest mytest_code.F90

37

Compiler Flags

Intel GNU Cray Description/
Comment

-O2 -O0 -O2 default

default, or -O3 -O2 or -O3,-Ofast default, or -O3 recommended

-qopenmp -fopenmp -fopenmp (C/C++)
-h omp (Fortran)

OpenMP

38

Compiler Recommendations
● Will not recommend any specific compiler

○ Intel - better chance of getting processor specific optimizations,
especially for KNL

○ Cray compiler – many new features and optimizations, especially
with Fortran

○ GNU - widely used by open software
● Try different compilers for potential performance

improvement
○ Start with the compilers that vendor/code developers used to

minimize the chance of hitting compiler and code bugs

39

Linking Considerations (1)

● Compiler wrapper will Link with Cray MPI (cray-mpich module is
loaded by default), Cray Scientific libraries (cray-libsci module is
loaded by default), and most Cray provided libraries and some
NERSC provided libraries (need to load corresponding modules)
automatically

CC parallel_hello.cpp

ftn dgemmx1.f90

module load cray-hdf5

cc h5write.c

40

Linking Considerations (2)
● To link with most NERSC provided libraries, extra include path and

libraries need to be added manually, which are usually defined in
module files for convenience, such as:

module load gsl

ftn test3.f90 $GSL

Use “module show gsl” to see how $GSL is defined

● To link with Intel MKL (Math Kernel Libraries) with Intel compiler,
use the “-mkl” flag

ftn test1.f90 -mkl # default to parallel -multi-threaded lib

The loaded “cray-libsci” will be ignored if -mkl is used

Running Jobs

42

Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Debug jobs are supported for up to 30 min
● Batch interactive jobs are supported for up to 4 hrs
● Typical run times are a few to 10s of hours

○ Limits are necessary because of MTBF and the need to
accommodate 7,000 users’ jobs

43

Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications
○ Cori has Haswell login nodes

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Cori has Haswell and KNL compute nodes
○ Binaries built for Haswell can run on KNL nodes, but not vice

versa

44

Cori Haswell Compute Nodes

● Each Cori Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware

threads per physical core.
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls

45

Cori KNL Example Compute Nodes
● A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high bandwidth on

package memory (MCDRAM)
● Default mode is: quad, cache

● A quad,cache node (default setting) has only 1 NUMA node with all CPUs
on the NUMA node 0 (DDR memory). MCDRAM is hidden from the
“numactl -H” result since it is a cache.

46

Submitting Batch Jobs
● To run a batch job on the compute nodes you must write a

“batch script” that contains:
○ Directives to allow the system to schedule your job
○ An srun command that launches your parallel executable

● A batch job will request resources about which qos, which type
of compute nodes, how many nodes, and for how long, etc.

● Submit the job to the queuing system with the sbatch or salloc
command

 sbatch my_batch_script or
 salloc <command line options>

47

Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute
Node

Other Compute Nodes
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes

48

My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C haswell -t 10:00
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld

49

Sample Cori Haswell Batch Script

● Need to specify which shell to use for batch script
● Environment is automatically imported

●

#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

50

Sample Cori Haswell Batch Script
#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

Job directives: instructions for the batch system

● Can use long name or short name (see next slide) to request resources
● Submission QOS (default is “debug”)
● How many compute nodes to reserve for your job
● How long to reserve those nodes
● What type of compute nodes to use
● More optional SBATCH keywords

51

Sample Cori Haswell Batch Script - MPI

SBATCH optional keywords:
● What file systems my job depends on (prevent to start when there are file

system issues)
● What to name my job
● What to name STDOUT files
● What account to charge
● Whether to notify you by email when your job finishes
● …

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 4
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

52

Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 2 --cpu_bind=cores ./mycode.exe

● There are 64 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu-bind is critical especially when nodes are not fully occupied

32 MPI tasks per node
in this example

53

 Sample Cori Haswell Batch Script - Hybrid
MPI/OpenMP

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=true
export OMP_PLACES=threads

srun -n 160 -c 16 --cpu-bind=cores ./mycode.exe

● Set OMP_NUM_THREADS
● Use OpenMP standard settings for process and thread affinity
● Again, “-c” specifies #_logical_CPUs to be allocated to each MPI task

○ with 4 MPI tasks per node on Haswell, set 64 logical CPUs /4 =16 for ”-c”
○ “-c” value should be >= OMP_NUM_THREADS

4 MPI tasks per node
 in this example

54

Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a

node
● Each serial job run on a single physical core of a “shared” node
● Up to 32 (Cori Haswell) jobs from different users depending on their memory

requirements
#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C haswell
#SBATCH -J my_job
./mycode.x

● Only available on Cori Haswell
● Small parallel job that use less than a full node can also run in the “shared” partition
● https://docs.nersc.gov/jobs/best-practices/#serial-jobs

● Do not specify #SBATCH -N”
● Default “#SBATCH -n” is 1
● Default memory is 1,952 MB for

Haswell
● Use -n or --mem to request more

slots for larger memory
● Do not use “srun” for serial

executable (reduces overhead)

https://docs.nersc.gov/jobs/best-practices/#serial-jobs

55

How to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated

nodes.
● Debug

○ Max 512 nodes, up to 30 min, run limit 2, submit limit 5
% salloc -N 20 -q debug -C haswell -t 30:00

● Interactive (highly recommend to use this!!)
○ Instant allocation (get nodes in 5 min or reject), run limit 2, submit limit 2
○ Max walltime 4 hrs, up to 64 nodes on Cori (Haswell and KNL combined)

per project
% salloc -N 2 -q interactive -C knl -t 2:00:00

○ More information (such as how to find out who in your project is using)
■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/

56

Advanced Running Jobs Options
● Bundle jobs (multiple “srun”s in one script, sequentially or

simultaneously)
● Use Job Arrays to manage collections of similar jobs
● Use job dependency features to chain jobs
● Run variable-time jobs and “flex” qos to run longer jobs
● Use workflow tools to manage jobs
● Use Burst Buffer for faster IO
● Use Shifter for jobs with custom user environment
● Use “xfer” for transferring to/from HPSS
● Use “bigmem” for large memory jobs

57

Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 100
#SBATCH -t 12:00:00
#SBATCH -J my_job
#SBATCH -o my_job.o%j
#SBATCH -L project,SCRATCH
#SBATCH -C haswell

srun -n 3200 ./a.out
srun -n 3200 ./b.out
srun -n 3200 ./c.out

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 9
#SBATCH -t 12:00:00
#SBATCH -J my_job
#SBATCH -o my_job.o%j
#SBATCH -L project
#SBATCH -C haswell

srun -n 44 -N 2 -c2 --cpu-bind=cores ./a.out &
srun -n 108 -N 5 -c2 --cpu-bind=cores ./b.out &
srun -n 40 -N 2 -c2 --cpu-bind=cores ./c.out &
wait

● Need to request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Need to request largest number of
nodes needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially

58

Job Arrays
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:00:00
#SBATCH --array=1-10
#SBATCH -L SCRATCH
#SBATCH -C haswell

cd test_$SLURM_ARRAY_JOB_ID
srun ./mycode.exe

● Better managing jobs, not necessary
faster turnaround

● Each array task is considered a single
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays

59

Dependency Jobs
cori% sbatch job1
Submitted batch job 1655447

cori06% sbatch --dependency=afterok:5547 job2
or
cori06% sbatch --dependency=afterany:5547 job2

cori06% sbatch job1
submitted batch job 1655447

cori06% cat job2
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:30:00
#SBATCH -d afterok:1655447
#SBATCH -C haswell
srun -n 16 -c 4 ./a.out

cori06% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies

60

Use Workflow Management Tools
● These tools can help data-centric science to automate moving

data, multi-step processing, and visualization at scales.
● Please do not do below!

for i = 1, 10000

 srun -n 1 ./a.out

It is inefficient and overwhelms Slurm scheduler
● Available workflow tools include: GNU parallel, Taskfarmer,

Fireworks, Nextflow, Papermill, etc.
● One usage case is to pack large number of serial jobs into

one script

61

 xfer Jobs
#!/bin/bash
#SBATCH -M escori
#SBATCH -q xfer
#SBATCH -t 12:00:00
#SBATCH -J my_transfer

#Archive run01 to HPSS
htar -cvf run01.tar run01

● Configured for the purpose of staging data from HPSS before run or archive
result to HPSS after run

● Avoid wasting NERSC hours if done within large runs
● Runs on external login nodes, via Slurm Server ”escori”.
● Can submit jobs to the xfer QOS from inside another batch script:

○ Add to the end of batch script: “sbatch -M escori -q xfer myarchive.sl”
● https://docs.nersc.gov/jobs/examples/#xfer-queue

https://docs.nersc.gov/jobs/examples/#xfer-queue

62

bigmem Jobs
#!/bin/bash
#SBATCH -M escori
#SBATCH -q bigmem
#SBATCH -N 1
#SBATCH -t 01:00:00
#SBATCH -J my_big_job
#SBATCH -L SCRATCH
#SBATCH --mem=250GB
srun -N 1 -n 1 ./my_big_exe

● Runs on external login nodes, via Slurm Server “escori”
● Node is shared among multiple users by default
● Can request exclusive node if needed to run with multiple threads

○ add #SBATCH --exclusive, and use srun -N 1 -c 32 ./my_big_exe
● https://docs.nersc.gov/jobs/examples/#large-memory

https://docs.nersc.gov/jobs/examples/#large-memory

63

Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is the basis for

getting optimal performance on Cori Haswell and KNL. It is also
essential for guiding further performance optimizations.
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Our goal is to promote OpenMP standard settings for portability.
○ OMP_PROC_BIND and OMP_PLACES are preferred to Intel

specific KMP_AFFINITY and KMP_PLACE_THREADS settings.
● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/

64

Can We Just Do a Naive srun?
Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache
node:

% export OMP_NUM_THREADS=8
% export OMP_PROC_BIND=spread (other choice are “close”,”master”,”true”,”false”)
% export OMP_PLACES=threads (other choices are: cores, sockets, and various ways to specify
explicit lists, etc.)

% srun -n 16 ./xthi |sort -k4n,6n
 Hello from rank 0, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 0, thread 1, on nid02304. (core affinity = 144) (on physical core 8)
 Hello from rank 0, thread 2, on nid02304. (core affinity = 17)
 Hello from rank 0, thread 3, on nid02304. (core affinity = 161) (on physical core 25)
 Hello from rank 0, thread 4, on nid02304. (core affinity = 34)
 Hello from rank 0, thread 5, on nid02304. (core affinity = 178) (on physical core 42)
 Hello from rank 0, thread 6, on nid02304. (core affinity = 51)
 Hello from rank 0, thread 7, on nid02304. (core affinity = 195) (on physical core 59)
 Hello from rank 1, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 1, thread 1, on nid02304. (core affinity = 144)

 It is a mess! thread 0 for rank 0, and thread 1 for rank 1 are on same physical core 0

65

 Importance of -c and --cpu-bind Options
● The reason: 68 cores on KNL is not divisible by #MPI tasks!

○ Each MPI task is getting 68x4/#MPI tasks of logical cores as the domain
size

○ MPI tasks are crossing tile boundaries
● Set number of logical cores per MPI task (-c) manually by wasting extra

4 cores on KNL on purpose: 256/#MPI_tasks_per_node.
○ Meaning to use 64 cores only on the 68-core KNL node, and spread the

logical cores allocated to each MPI task evenly among these 64 cores.
○ Now it looks good!
○ % srun -n 16 -c 16 --cpu-bind=cores ./xthi

 Hello from rank 0, thread 0, on nid09244. (core affinity = 0)
 Hello from rank 0, thread 1, on nid09244. (core affinity = 136) (on physical core 0)
 Hello from rank 0, thread 2, on nid09244. (core affinity = 1)
 Hello from rank 0, thread 3, on nid09244. (core affinity = 137) (on physical core 1)

66

Now It Looks Good!

67

Sample Job Script to Run on KNL Nodes

Illustration Courtesy of Zhengji Zhao, NERSC

68

NERSC Job Script Generator
https://my.nersc.gov/script_generator.php

69

Monitoring Your Jobs
● Once your job is submitted, it enters the queue and will start when

resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size,

wall time request (and fair share).
● You can monitor with

○ squeue
○ sqs
○ sacct

● On the web
○ https://my.nersc.gov

■ Cori Queues, Queue backlogs, Queue Wait Times (statistics data)
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov the “Jobs” tab

https://my.nersc.gov/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov

70

squeue: Slurm Batch Queue Display

● By default, “squeue” displays all users jobs.
● Use “squeue -u" to display your own jobs.
● See “squeue --help” or “man squeue” for more details.

yunhe@cori05:~> yunhe@cori09:~> squeue -a |more
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 31593007 regular_k allHSQf2 detar CG 5:46:29 13 nid[02568-02569,03678,03816,03888-03889,0726
5,07806,07811,09911-09912,10697,10806]
 31611508 shared run_each cemitch CG 3:12 1 nid00553
 31611509 shared run_each cemitch CG 3:12 1 nid00552
 31146718 regular_k hello_up bonachea PD 0:00 1 (ReqNodeNotAvail, UnavailableNodes:nid[02655
,02994,03002,03446,03465,03818,03912,04028-04029,04202,04219,04408,04466,04950,05087,05152,05163,05444,05689,060
96-06099,06580,06662,06902,06948,07462,07813,08029,08215,08251,08562,08603,08815,09133,09408-09419,09424-09487,0
9492-09547,09552-09599,09762,11062,11247,11557,11835,11905])
 31612924 genepool align-70 qc_user PD 0:00 1 (Resources)
 31612927 genepool filter-7 qc_user PD 0:00 1 (Priority)
 31612929 genepool align-70 qc_user PD 0:00 1 (Priority)
 31611879 debug_knl benchmar junmin PD 0:00 8 (Dependency)
 31611883 debug_knl benchmar junmin PD 0:00 128 (Dependency)
 31611888 debug_knl benchmar junmin PD 0:00 16 (Dependency)
 31611897 debug_hsw test startsev PD 0:00 32 (Dependency)
 31611902 debug_knl benchmar junmin PD 0:00 32 (Dependency)
 31612757_[3-5] debug_hsw runme.sh kkrizka PD 0:00 1 (QOSMaxJobsPerUserLimit)
...

71

sqs: NERSC Custom Batch Queue Display

yunhe@cori05:~> sqs2
JOBID ST USER NAME NODES TIME_LIMIT TIME SUBMIT_TIME QOS START_TIME FEATURES
NODELIST(REASON)
31567887 PD fxxx wrxx 512 15:00 0:00 2020-06-09T23:11:27 debug_knl 2020-06-10T00:56:00 knl&quad&cache (Resources)

31438456 PD fxxx mpixxx 150 30:00 0:00 2020-06-07T12:42:04 regular_1 N/A haswell (Resources)
31543103 PD fxxx mpixxx 3 30:00 0:00 2020-06-09T00:22:12 regular_1 N/A haswell (Priority)
31402334 R fxxx Nxxxxx 1 12:00:00 4:27:45 2020-06-05T23:59:19 regular_1 2020-06-09T19:28:54 knl&quad&cache nid10273
<omitted….>

● By default, “sqs” displays your own jobs. Use “sqs -a" to display all users jobs.
● See “sqs --help” for more details.
● sqs2 is a simplified NERSC wrapper for the Slurm "squeue" command with a

chosen default format. It takes all allowed flags in “squeue”.
● “sqs2” will be renamed to “sqs” in July.

yunhe@cori05:~> sqs
JOBID ST USER NAME NODES REQUESTED USED SUBMIT QOS SCHEDULED_START FEATURES REASON
110901xx PD fxxxx mxxx 1536 5:00 0:00 2018-03-20T10:49:23 regular_0 2018-03-22T06:30:00 haswell Resources
110901xx PD fxxxx run.xxx* 1537 20:00 0:00 2018-03-20T10:51:03 regular_0 2018-03-22T06:30:00 haswell Resources
110823xx PD fxxxx gxxx 300 30:00 0:00 2018-03-19T23:05:24 regular_1 avail_in_~1.6_days haswell Priority
110823xx PD fxxxx run-xx 768 20:00 0:00 2018-03-19T23:05:33 regular_1 avail_in_~1.6_days haswell Priority
110823xx PD fxxxx rxxxx 1536 20:00 0:00 2018-03-19T23:05:04 regular_0 N/A haswell JobHeldUser
110823xx PD fxxxx axxxxxxxx* 1536 30:00 0:00 2018-03-19T23:05:16 regular_0 N/A haswell JobHeldUser
111152xx PD fxxxx run.xxx 769 2:00:00 0:00 2018-03-21T09:39:29 regular_1 avail_in_~3.0_days knl&quad&cache None
<omitted…>

72

sacct: Query Completed and Pending Jobs

● Maximum query duration is one month (subject to change)
● Detailed job steps info will be displayed without “-X” flag
● Many more job fields can be queried. See “sacct --help” or “man

sacct” for more details.

73

Cori Haswell Queue Policy (as of June 2020)

74

Cori KNL Queue Policy (as of June 2020)

75

How Your Jobs are Charged (1)
● Unit: NERSC Hours
● Each architecture has a base charge per node hour used:

○ Cori Haswell: 140
○ Cori KNL: 80

● Modification to base charge by QOS used:
○ premium: 2.0
○ regular: 1.0 (default)
○ low: 0.5
○ flex: 0.25
○ overrun: 0
○ shared: fraction of the node used

● On Cori KNL
○ Jobs requesting 1024 or more nodes get a 20% discount

76

How your Jobs are Charged (2)
● Your project is charged for each node your job was allocated for

the entire duration of your job.
○ The minimum allocatable unit is a node (except for the “shared”

QOS).
○ Example: 4 Cori Haswell nodes, run for 1 hour with “premium”

QOS
NERSC hours = 4 * 1 hour * 140 * 2 = 1120

○ “shared” jobs are charged with # of physical cores used instead of
the entire node.

● If you have access to multiple projects, pick which one to charge
in your batch script
 #SBATCH –A project_name

77

How are Jobs Scheduled
● Each job has its priority value, composed of qos, job age, and a small

value of fairshare.
● There are two Slurm schedulers: main and backfill.
● Every few minutes, the main scheduler schedules jobs in the order of

the priority list a few days into the future.
○ Jobs are only eligible to be scheduled if they've reached a priority

threshold.
○ Currently only 2 jobs per qos per user are considered for scheduling.

● The backfill scheduler then schedules small and short jobs to run if
they will not affect the start time of those jobs that are already
scheduled by the main scheduler.

78

Tips for Getting Better Throughput
● Line jumping is allowed, but it may cost more (with “premium” QOS)
● Submit shorter jobs, they are easier to schedule

○ Checkpoint to break up long jobs, use variable time
○ Short jobs can take advantage of ‘backfill’ opportunities
○ Run short jobs just before maintenance
○ Run variable-time jobs; use “flex” QOS

● Make sure the wall clock time you request is accurate
○ Larger shorter jobs are easier to schedule than long smaller jobs
○ Many users unnecessarily request the largest wall clock time possible

as default
● Check queue backlogs and queue wait times

○ https://my.nersc.gov/backlog.php
○ https://my.nersc.gov/queuewaittimes.php

https://my.nersc.gov/backlog.php
https://my.nersc.gov/queuewaittimes.php

79

Large Jobs Considerations
● sbcast your executables to compute nodes before srun:

sbcast --compress=lz4 /path/to/exe /tmp/exe

srun /tmp/exe

https://docs.nersc.gov/jobs/best-practices/#large-jobs
● Consider to build statically to run large jobs.

○ There may be considerable startup delays for running large jobs of
dynamic executables.

● Consider to use shifter for large jobs using shared libraries.
● Consider to use burst buffer for jobs doing large IO.

https://docs.nersc.gov/jobs/best-practices/#large-jobs

80

Other Running Jobs Considerations
● Remember to compile separately for each type of compute nodes
● Running jobs from global homes is strongly discouraged

○ IO is not optimized
○ The global homes file system access on compute nodes is much slower than

from $SCRATCH
○ It may also cause negative impact for other users interactive response on the

system

● Consider to put your project’s shared software in
/global/common/software/<project>
○ It is mounted read-only on compute nodes, so has less impact than other

GPFS file systems (global homes or community file system)

● Consider to adopt workflow tools for better managing your jobs

Data Analytics Software and Services

82

Cori’s Data Friendly Features

83

Production Data Software Stack

84

Data Analytic Software Services
● Science Gateways
● Databases
● Shifter
● Burst Buffer
● Python
● Jupyter
● Machine Learning / Deep Learning
● Workflows
● And more …

85

Access for External Collaborators
● Science Gateways (web portals)

○ NERSC supports project-level public http access
■ Project specific area can be created:

/global/cfs/cdirs/<your_project>/www
■ These are available for public access under the URL:

http://portal.nersc.gov/cfs/<your_project>

○ Each repo has a /project space, can publish as above
○ Special Science Gateways can be created. Sophisticated ones can

be made with SPIN: https://docs.nersc.gov/services/spin/getting_started/
○ Details at: https://docs.nersc.gov/services/science-gateways/

● FTP Upload Service (external user to share data with NERSC user)
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/nersc-ftp-
upload-service/

https://docs.nersc.gov/services/spin/getting_started/
https://docs.nersc.gov/services/science-gateways/
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/nersc-ftp-upload-service/
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/nersc-ftp-upload-service/

86

● Relational / SQL Databases
○ MySQL and PostgreSQL, good for:

 structured data (have a ‘Schema’)
 Relational (tables of rows and columns)
 Mid-Size, <= several GB in total

● NoSQL / Schema-less Databases
○ MongoDB, good for:

 Un-Structured Data (‘Schema-less’)
 Mid-Size to Large, e.g. 10 GB of Text

● More info and how to request a database:
https://docs.nersc.gov/services/databases/

Databases

https://docs.nersc.gov/services/databases/

87

Shifter

● NERSC R&D effort, in collaboration with Cray, to support
Docker Application images

● “Docker-like” functionality on the Cray and HPC Linux clusters.
Enables users to run custom environments on HPC systems.

● Addresses security issues in a robust way
● Efficient job-start & Native application performance

https://docs.nersc.gov/development/shifter/how-to-use/

https://docs.nersc.gov/development/shifter/how-to-use/

88

Shifter Accelerates Python Applications

89

Create an Image with Docker
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
Update packages and install dependencies
RUN apt-update –y && \
 apt-get install -y build-essential

Copy in the application
ADD . /myapp
Build it
RUN cd /myapp && \
 make && make install

Dockerfile

laptop> docker build -t scanon/myapp:1.1 .
laptop> docker push scanon/myapp:1.1

90

Use the Image with Shifter
#!/bin/bash

#SBATCH -N 16 -t 20

#SBATCH --image=scanon/myapp:1.1

module load shifter

export TMPDIR=/mnt

srun -n 16 shifter /myapp/app

cori> shifterimg pull scanon/myapp:1.1
cori> sbatch ./job.sl

Submit script
job.sl

91

Shifter and MPI
This example makes use of an Ubuntu-based NERSC base image
that already has MPI built and installed.
Shifter automatically maps in appropriate libraries at run time.

FROM nersc/ubuntu-mpi:14.04
ADD helloworld.c /app/
RUN cd /app && mpicc helloworld.c -o /app/hello
ENV PATH=/usr/bin:/bin:/app:/usr/local/bin

cori> shifterimg pull scanon/myapp:1.1
cori> salloc -n 128 --image=scanon/myapp:1.1 -C haswell
% srun -n 128 shifter /myapp/app

92

Use Burst Buffer for Faster IO

● Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O
intensive workloads

● Jobs can request a job-temporary BB filesystem, or a
persistent (up to a few weeks) reservation

● More info
○ https://docs.nersc.gov/jobs/examples/#burst-buffer

https://docs.nersc.gov/jobs/examples/#burst-buffer

93

Burst Buffer Architecture

➢ DataWarp software (integrated with SLURM WLM) allocates portions of available storage to users
per-job (or ‘persistent’).

➢ Users see a POSIX filesystem
➢ Filesystem can be striped across multiple BB nodes (depending on allocation size requested)

Compute Nodes

Aries High-Speed
Network

Blade = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs

InfiniBand Fabric

Lustre OSS/OST

St
o

ra
ge

Fa

b
ri

c
(I

n
fi

n
iB

an
d

)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

Burst
Buffer

Lustre

Nodes 288 248

Capacity (PB) 1.8 28

94

- 94 -

● ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)
● ‘access_mode=striped’ – visible to all compute nodes and striped across

multiple BB nodes
● Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –q regular -N 10 -C haswell –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=$SCRATCH/inputs destination=$DW_JOB_STRIPED/inputs \ type=directory
#DW stage_in source=$SCRATCH/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \ type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

Burst Buffer Example

95

Python
● Extremely popular interpreted language, continuing to grow
● Libraries like NumPy, SciPy, scikit-learn commonly used for

scientific analysis
● Are used for ML/DL
● NERSC Python is Anaconda
● https://docs.nersc.gov/programming/high-level-environments/python/
● Do not use /usr/bin/python, instead:

 module load python
 which already includes basic packages: numpy, scipy, mpi4py

https://docs.nersc.gov/programming/high-level-environments/python/

96

Your Own Python Conda Environment
● To make a custom env

module load python
conda create -n myenv python=3.7
source activate myenv
conda (or pip) install your_custom_package
###import antigravity
source deactivate myenv

● To use the custom env later
source activate mynev (# does not change your dot file
setup)
or
conda activate myenv (# changes your dot file setup)
<...steps to use this conda env ... >
conda deactivate myenv

97

Parallel with Python
● Within a node

○ Use OpenMP-threaded math libs
○ Multiprocessing is OK too

● Multi-node parallelism
○ Best supported by mpi4py
○ Dask and PySpark frameworks also work

● Hybrid parallelism
○ Best route is mpi4py + threaded math libs

● Best to use shifter to scale up Python with mpi4py
○ https://docs.nersc.gov/programming/high-level-environments/python/scaling-up

/#shifter-the-best-way-to-run-python-at-scale

https://docs.nersc.gov/programming/high-level-environments/python/scaling-up/#shifter-the-best-way-to-run-python-at-scale
https://docs.nersc.gov/programming/high-level-environments/python/scaling-up/#shifter-the-best-way-to-run-python-at-scale

98

What is Jupyter?
Interactive open-source web application

Allows you to create and share documents, “notebooks,” containing:
Live code
Equations
Visualizations
Narrative text
Interactive widgets

Things you can use Jupyter notebooks for:
Data cleaning and data transformation
Numerical simulation
Statistical modeling
Data visualization
Machine learning
Workflows and analytics frameworks

99

Which Notebook Server to Choose?

Spin Shared CPU Node:
External to Cori, in Spin
Can’t see $SCRATCH
Can’t run jobs
But can see /cfs, $HOME

Cori Shared CPU Node:
Notebook on cori{13,14,19}
Can see /cfs, $HOME, etc
Can see Cori $SCRATCH
Same Python env as ssh login
Can submit jobs via %sbatch

Cori Shared GPU Node:
Notebook on cgpu{01-18}
Like Cori Shared CPU
Runs in a 4h job
Enabled if you have GPU QOS

100

JupyterLab Interface

101

Your Own Custom Jupyter Kernel
Most common Jupyter question:

“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

 $ module load python
 $ conda create -n myenv python=3.7
 $ source activate myenv
 (myenv) $ conda install ipykernel <other-packages>...
 (myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.

102

NERSC Deep Learning Software Stack Overview
General strategy:

● Provide functional, performant installations of the
most popular frameworks and libraries

● Enable flexibility for users to customize and deploy
their own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● Cray Plugin

Productive tools and services:
● Jupyter, Shifter

103

How to Use NERSC DL Software Stack
We have modules you can load which contain python and DL libraries:

module load tensorflow/intel-2.1.0-py37

module load pytorch/v1.5.0

Check which software versions are available with:
module avail tensorflow

You can install your own packages on top to customize:
pip install --user MY-PACKAGE

Or you can create your conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).
We also have pre-installed Jupyter kernels.

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments

104

Jupyter for Deep Learning
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on Cori CPU and Cori GPU
● using our pre-installed DL software kernels
● using their own custom kernels

104

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels

NERSC Online Resources

106

Online Resources: Classic NERSC Page

● https://www.nersc.gov
● Science, News, Publications
● Contact Us
● Live Status (MOTD):

https://www.nersc.gov/live-status/
motd/

● Training Events:
https://www.nersc.gov/users/train
ing/events/

https://www.nersc.gov
https://www.nersc.gov/live-status/motd/
https://www.nersc.gov/live-status/motd/
http://www.nersc.gov/users/training/events/
http://www.nersc.gov/users/training/events/

107

Online Resources: NERSC Docs
Technical Documentations

 https://docs.nersc.gov

● Accounts
● IRIS
● Connecting
● Programming
● Running Jobs
● Applications
● Storage Systems
● Analytics
● Performance
● ...

https://docs.nersc.gov

108

Online Resources: MyNERSC
 https://my.nersc.gov
● Dashboard
● Jobs
● Center Status
● File Brwoser
● Service Tickets
● NX Desktop

(disabled)
● Jupyter Hub
● Links to other useful

pages

https://help.nersc.gov/

109

Online Resources: IRIS

● IRIS: NERSC Account Management and Reporting:
https://iris.nersc.gov

○ Change password
○ Change contact info
○ SSH Keys, MFA
○ Check usage info

https://iris.nersc.gov

110

Online Resources: Help Portal

 https://help.nersc.gov
● Submit tickets (ask questions)
● Request forms:

○ Quota Increase
○ Reservations

● Allocation (ERCAP) Requests

https://help.nersc.gov/

111

https://my.nersc.gov Leads You to All Sites

iris.nersc.gov

docs.nersc.gov

www.nersc.gov

jupyter.nersc.gov

help.nersc.gov
my disk quota

is cori up?

my jobs

https://my.nersc.gov

112

Online Resources: Cori GPU Documentation
 https://docs-dev.nersc.gov
● GPU nodes

○ Hardware info
○ Slurm access
○ Usage
○ Software

■ Compilers
■ Math libraries
■ Python
■ Shifter
■ Profiling

○ Examples

https://docs-dev.nersc.gov

113

Acknowledgement
● Used / Adapted some slides and materials from the

upcoming NERSC New user training (June 16, 2020)
○ Thanks Rebecca Hartman-Baker, Clayton Bagwell, Steve Leak,

Zhengji Zhao, Woo-Sun Yang, Bill Arndt, Wahid Bhimji, Lisa
Gerhardt, Quincy Koziol, Laurie Stephey, Rollin Thomas, Shane
Canon, Mustafa Mustafa

● https://www.nersc.gov/users/training/events/new-user-trai
ning-june-16-2020/
○ You are encouraged to attend the all day training next Tuesday, or

join the particular sessions of interest for in-depth understanding.

https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/
https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/

Hands-on Exercises

115

Hands-on Exercises

● % cd $SCRATCH
● % cp -r /global/cfs/cdirs/training/2020/CSSS .
● % cd CSSS
● Beginner users follow: run-hello.README
● Advanced users follow: run-xthi.README
● References

○ Running Jobs: https://docs.nersc.gov/jobs/
○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/

116

Thank You

